Graphene oxide conjugated with polymers: a study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent?

نویسندگان

  • Ping-Ching Wu
  • Hua-Han Chen
  • Shih-Yao Chen
  • Wen-Lung Wang
  • Kun-Lin Yang
  • Chia-Hung Huang
  • Hui-Fang Kao
  • Jui-Cheng Chang
  • Chih-Li Lilian Hsu
  • Jiu-Yao Wang
  • Ting-Mao Chou
  • Wen-Shuo Kuo
چکیده

BACKGROUND The results showed that the deciding factor is the culture medium in which the bacteria and the graphene oxide (GO) are incubated at the initial manipulation step. These findings allow better use of GO and GO-based materials more and be able to clearly apply them in the field of biomedical nanotechnology. RESULTS To study the use of GO sheets applied in the field of biomedical nanotechnology, this study determines whether GO-based materials [GO, GO-polyoxyalkyleneamine (POAA), and GO-chitosan] stimulate or inhibit bacterial growth in detail. It is found that it depends on whether the bacteria and GO-based materials are incubated with a nutrient at the initial step. This is a critical factor for the fortune of bacteria. GO stimulates bacterial growth and microbial proliferation for Gram-negative and Gram-positive bacteria and might also provide augmented surface attachment for both types of bacteria. When an external barrier that is composed of GO-based materials forms around the surface of the bacteria, it suppresses nutrients that are essential to microbial growth and simultaneously produces oxidative stress, which causes bacteria to die, regardless of whether they have an outer-membrane-Gram-negative-bacteria or lack an outer-membrane-Gram-positive-bacteria, even for high concentrations of biocompatible GO-POAA. The results also show that these GO-based materials are capable of inducing reactive oxygen species (ROS)-dependent oxidative stress on bacteria. Besides, GO-based materials may act as a biofilm, so it is hypothesized that they suppress the toxicity of low-dose chitosan. CONCLUSION Graphene oxide is not an antimicrobial material but it is a general growth enhancer that can act as a biofilm to enhance bacterial attachment and proliferation. However, GO-based materials are capable of inducing ROS-dependent oxidative stress on bacteria. The applications of GO-based materials can clearly be used in antimicrobial surface coatings, surface-attached stem cells for orthopedics, antifouling for biocides and microbial fuel cells and microbial electro-synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation and comparison of antimicrobial effect of graphene oxide and common antibiotics on standard and hospital Resistant Staphylococcus aureus

Background: Graphene chips are insoluble forms of graphene. Graphene is highly reactive and has no biocompatibility, but after oxidation, it becomes water-soluble. Graphene oxide (GO) is applied in biomedical, including gene and drug transfer, biomedical imaging, biomedical sensors, and antibiotics. Staphylococcus aureus is a gram-positive bacteria and is the most important species in Staphyloc...

متن کامل

بررسی جذب سطحی در نانوکامپوزیت‌های گرافن/ اکسید‌گرافن- پلیمرهای تقویت ‌شده به‌روش شبیه‌سازی دینامیک مولکولی واکنشی

Abstract: In this work, the amounts of the adsorption of conjugated polymers onto graphene/ graphene oxide were examined by reactive force-field molecular dynamics simulation. The polymers were poly(3-hexylthiophene) (P3HT) and poly(phenothiazine vinylene-polythiophene)(PTZV-PT). The length and width of the graphene sheet were 95.19 Å and 54.16 Å, respectively. The graphene oxide sheets with di...

متن کامل

Assessment of Agaricus Bisporus S-II Extract as a Bio-Controlling Agent against Human Pathogenic Bacterial Species

Agaricus bisporus mushrooms are well known for their nutritional and medicinal values. A. bisporus is a source of protein (about 40% on a dry basis), ergosterol, several minerals, carbohydrate, and fat. The present study was conducted to investigate the effect of A. bisporus S-II extracts on human pathogenic bacteria in-vitro condition. Totally, thre...

متن کامل

Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonas hydrophila

Objective(s): CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Materials and Methods: Here, we synthesized Cu...

متن کامل

Microbial Reduction of Graphene Oxide by ‎Lactobacillus Plantarum

   Here, we report that the reduced graphene oxide nanosheets were successfully synthesized using the ‎Lactobacillus plantarum biomass in a simple, environmentally friendly and scalable manner. We ‎produced graphene oxide by oxidization and exfoliation of graphite flakes with modified Hummer's ‎method and then reduced to reduced graphene oxide by using Lactobacillus plantarum biomass as a ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2018